Loops on Surfaces, Feynman Diagrams, and Trees
نویسنده
چکیده
We relate the author’s Lie cobracket in the module additively generated by loops on a surface with the Connes-Kreimer Lie bracket in the module additively generated by trees.
منابع مشابه
From Trees to Loops and Back
We argue that generic one-loop scattering amplitudes in supersymmetric Yang-Mills theories can be computed equivalently with MHV diagrams or with Feynman diagrams. We first present a general proof of the covariance of one-loop non-MHV amplitudes obtained from MHV diagrams. This proof relies only on the local character in Minkowski space of MHV vertices and on an application of the Feynman Tree ...
متن کاملInstitute for Mathematical Physics Renormalization Automated by Hopf Algebra Renormalization Automated by Hopf Algebra
It was recently shown that the renormalization of quantum eld theory is organized by the Hopf algebra of decorated rooted trees, whose coproduct identiies the divergences requiring subtraction and whose antipode achieves this. We automate this process in a few lines of recursive symbolic code, which deliver a nite renormalized expression for any Feynman diagram. We thus verify a representation ...
متن کاملGEFICOM: Automated Generation and Computation of Feynman Diagrams in Quantum Chromodynamics up to Three Loops
The interpretation of electroweak precision data in particle physics makes it necessary to compute higher-order quantum corrections in perturbation theory. The traditional manual treatment of the corresponding Feynman diagrams is limited by the large amount of their occurrence and the enormous complexity of the mathematical expressions. In the framework of our research project in quantum chromo...
متن کاملFeynman Graphs, Rooted Trees, and Ringel-hall Algebras
We construct symmetric monoidal categoriesLRF ,LFG of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of LRF ,LFG, HLRF ,HLFG are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman diagrams. We thus obtain an interpretation...
متن کامل6 J un 2 00 8 FEYNMAN GRAPHS , ROOTED TREES , AND RINGEL - HALL ALGEBRAS
We construct symmetric monoidal categoriesLRF ,LFG of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of LRF ,LFG, HLRF ,HLFG are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman diagrams. We thus obtain an interpretation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005